已知平面上的线段l及点P,任取l上一点Q,线段PQ长度的最小值称为点P到线段l的距离,记作d(P,l)
①若点P(1,1),线段l:x-y-3=0(3≤x≤5),则d(P,l)=
;
②设l是长为2的定线段,则集合D={P|d(P,l)≤1}所表示的图形面积为4;
③若A(1,3),B(1,0),C(-1,3),D(-1,0),线段l1:AB,l2:CD,则到线段l1,l2距离相等的点的集合D={P|d(P,l1)=d(P,l2)}={(x,y)|x=0};
④若A(-1,0),B(1,0),C(0,-1),D(0,1),线段l1:AB,l2:CD,则到线段l1,l2距离相等的点的集合D={P|d(P,l1)=d(P,l2)}={(x,y)|x2-y2=0}.
其中正确的有 .
①若点P(1,1),线段l:x-y-3=0(3≤x≤5),则d(P,l)=
5 |
②设l是长为2的定线段,则集合D={P|d(P,l)≤1}所表示的图形面积为4;
③若A(1,3),B(1,0),C(-1,3),D(-1,0),线段l1:AB,l2:CD,则到线段l1,l2距离相等的点的集合D={P|d(P,l1)=d(P,l2)}={(x,y)|x=0};
④若A(-1,0),B(1,0),C(0,-1),D(0,1),线段l1:AB,l2:CD,则到线段l1,l2距离相等的点的集合D={P|d(P,l1)=d(P,l2)}={(x,y)|x2-y2=0}.
其中正确的有
考点:集合的表示法
专题:综合题,集合
分析:①根据所给的是一条线段,点到线段的距离不一定使用点到直线的距离公式得到,二是需要观察过点做垂线,垂足是否落到线段上,结果不是落到线段上,所以用两点之间的距离公式.
②由题意知集合D={P|d(P,l)≤1}所表示的图形是一个边长为2的正方形和两个半径是1的半圆,做出面积.
③④根据所给的四个点的坐标,写出两条直线的方程,从直线方程中看出这两条直线之间的平行关系,得到要求的结果.
②由题意知集合D={P|d(P,l)≤1}所表示的图形是一个边长为2的正方形和两个半径是1的半圆,做出面积.
③④根据所给的四个点的坐标,写出两条直线的方程,从直线方程中看出这两条直线之间的平行关系,得到要求的结果.
解答: 解:①点P(1,1)到线段l:x-y-3=0(3≤x≤5)的距离
d(P,l)是点P到(3,0)的距离,d(P,l)=
,故①正确;
②由题意知集合D={P|d(P,l)≤1}所表示的图形是一个边长为2的正方形和两个半径是1的半圆,
∴S=22+π=4+π,故②错误;
③A(1,3),B(1,0),C(-1,3),D(-1,0).
利用两点式写出两条直线的方程,AB:x=1,CD:x=-1,
到两条线段l1,l2距离相等的点的集合Ω={P|d(P,l1)=d(P,l2)},
根据两条直线的方程可知两条直线之间的关系是平行,
∴到两条直线距离相等的点的集合是y轴,故③正确.
④A(-1,0),B(1,0),C(0,-1),D(0,1),线段l1:y=0,l2:x=0,则到线段l1,l2距离相等的点的集合D={P|d(P,l1)=d(P,l2)}={(x,y)|x2-y2=0},故④正确.
故答案为:①③④.
d(P,l)是点P到(3,0)的距离,d(P,l)=
5 |
②由题意知集合D={P|d(P,l)≤1}所表示的图形是一个边长为2的正方形和两个半径是1的半圆,
∴S=22+π=4+π,故②错误;
③A(1,3),B(1,0),C(-1,3),D(-1,0).
利用两点式写出两条直线的方程,AB:x=1,CD:x=-1,
到两条线段l1,l2距离相等的点的集合Ω={P|d(P,l1)=d(P,l2)},
根据两条直线的方程可知两条直线之间的关系是平行,
∴到两条直线距离相等的点的集合是y轴,故③正确.
④A(-1,0),B(1,0),C(0,-1),D(0,1),线段l1:y=0,l2:x=0,则到线段l1,l2距离相等的点的集合D={P|d(P,l1)=d(P,l2)}={(x,y)|x2-y2=0},故④正确.
故答案为:①③④.
点评:本题考查点到直线的距离公式,考查两点之间的距离公式,考查利用两点式写直线的方程,考查点到线段的距离,本题是一个综合题目.